Normalized Clustering Algorithm Based on Mahalanobis Distance

نویسندگان

  • JENG-MING YIH
  • YUAN-HORNG LIN
چکیده

FCM (fuzzy c-means algorithm) based on Euclidean distance function converges to a local minimum of the objective function, which can only be used to detect spherical structural clusters. The added fuzzy covariance matrices in their distance measure were not directly derived from the objective function. In this paper, an improved Normalized Clustering Algorithm Based on Mahalanobis distance by taking a new threshold value and a new convergent process is proposed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unsupervised Clustering Algorithm Based on Normalized Mahalanobis Distances

Some of the well-known fuzzy clustering algorithms are based on Euclidean distance function, which can only be used to detect spherical structural clusters. Gustafson-Kessel clustering algorithm and Gath-Geva clustering algorithm were developed to detect non-spherical structural clusters. However, the former needs added constraint of fuzzy covariance matrix, the later can only be used for the d...

متن کامل

Fuzzy Possibility C-Mean Based on Mahalanobis Distance and Separable Criterion

The well known fuzzy partition clustering algorithms are most based on Euclidean distance function, which can only be used to detect spherical structural clusters. Gustafson-Kessel (GK) clustering algorithm and Gath-Geva (GG) clustering algorithm, were developed to detect non-spherical structural clusters, but both of them based on semi-supervised Mahalanobis distance needed additional prior in...

متن کامل

A Hybrid Time Series Clustering Method Based on Fuzzy C-Means Algorithm: An Agreement Based Clustering Approach

In recent years, the advancement of information gathering technologies such as GPS and GSM networks have led to huge complex datasets such as time series and trajectories. As a result it is essential to use appropriate methods to analyze the produced large raw datasets. Extracting useful information from large data sets has always been one of the most important challenges in different sciences,...

متن کامل

Multiple ellipse fitting by center-based clustering

This paper deals with the multiple ellipse fitting problem based on a given set of data points in a plane. The presumption is that all data points are derived from k ellipses that should be fitted. The problem is solved by means of center-based clustering, where cluster centers are ellipses. If the Mahalanobis distance-like function is introduced in each cluster, then the cluster center is repr...

متن کامل

DBCAMM: A novel density based clustering algorithm via using the Mahalanobis metric

In this paper we propose a new density based clustering algorithm via using the Mahalanobis metric. This is motivated by the current state-of-the-art density clustering algorithm DBSCAN and some fuzzy clustering algorithms. There are two novelties for the proposed algorithm: One is to adopt the Mahalanobis metric as distance measurement instead of the Euclidean distance in DBSCAN and the other ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014